

Fundamental Aeronautics Program

Subsonic Rotary Wing Project

Objectives and Challenges

- Flight Dynamics and Controls deals with the pilot and cockpit technologies as a bridge between the vehicle and operations concepts
- Flight control of large, complex rotorcraft
 - Implications of large aircraft size
 - Obtaining high bandwidth control
 - Emerging blade control concepts
 - Rotor speed changes
 - Flexible structures
 - Cockpit and pilot inceptors
- Complex flight operations management
 - Hover to cruise to hover conversions
 - Control mode changes
 - Noise abatement
 - Obstacle rich, poor visibility, low altitude operations
 - Congested airspace operations

FD&C Discipline Tasks

Control Theory and Intelligent Automation

- Full envelope flight dynamics modeling
- Optimal trajectories for noise abatement
- Human pilot interface modeling

Applied Flight Dynamics and Controls

- Handling qualities design envelope requirements
- Guidance and control for advanced rotorcraft in NextGen airspace
- Safety analysis of helicopter accidents

Full Envelope Flight Dynamics Modeling

Forces and Moments

inear Equations of

Non-linear Gravity Forces

- Simplified hover dynamics model: 2008-2009
- Enhanced low-speed model: 2010-2011
 - Expanded speed envelope
 - Nacelle tilt, independent rotor control

Controls

B Matrix

- Full flight envelope stability derivative model: 2012-2013
 - Full nacelle range, flaps, rotor speed changes
 - Supports research with modest computational requirements
- Total force and moment model: ~ 2014
 - Higher fidelity physics-based full flight envelope simulation model
- LCTR/HETR test in Army AFDD 7x10 foot wind tunnel at Ames: 2011
 - Measure basic low-speed aerodynamics of fuselage/tail/wing/nacelle

LCTR 7x10-ft Wind Tunnel Test

- First wind tunnel test to measure complete LCTR airframe aerodynamics (without rotors)
- Part of a joint test between NASA and US Army
- Test objectives:
 - Airplane mode (shown) High speed (200 knots) for lateral-directional airframe stability assessment
 - Helicopter mode Low speed data (<60 knots) with pitch (+/- 10 deg) and yaw (+/- 180 deg) variations for low speed aerodynamics
- Tasks completed to date:
 - LCTR model installed in the test section
 - Oil flow visualization in airplane mode (shown)
 - Aerodynamic forces and moments measured in airplane mode for three different wingtip/nacelle configurations
- Data to be used for:
 - Comparison/validation of CFD tool predictions
 - Development of flight dynamics simulation models

Optimal Trajectories for Noise Abatement

Objective:

 Apply state of the art optimization techniques to design rotorcraft approach techniques that minimize ground noise.

Approach:

- Configuration space for motion planning defines the set of transformations that can be applied to the rotorcraft during approach.
- State of the art constraint optimization and path planning algorithms (A*, Field D*, Probabilistic Roadmaps) search for best trajectories, straight and maneuvers.
- Noise predictions from Rotorcraft Noise Model (RNM) used to evaluate candidate trajectories
- Realistic terrain representations (water, residential, industrial, etc.) allow for solutions that can be applied to real landing environments.

1999 XV-15 Proposed Approach Profiles

Land Use Model around Pensacola Airport

Optimal Trajectories for Noise Abatement

Status:

- Joint work with SRW Acoustics team
- SAA with University of Padua, Italy to develop noise 'cost' functions based on RNM output to be used by optimizer.
- WYE support for developers at Florida Human and Machine Cognition (IHMC) for implementing path planning algorithms, develop land-use models around real airports

Results:

- Optimizer based on stochastic local search finds trajectories that are roughly 20% quieter on average than 'pilot-defined' quiet paths.
- Pilot-defined 'flyability constraints' means that the optimal trajectories adhere to requirements for safety and passenger comfort.

Baseline height-velocity profile

Optimized height-velocity profile

Active Inceptor Handling Qualities Study

- Joint Army-NASA investigation
- Objectives:
 - Study interaction between inceptor force-feel characteristics and handling qualities
 - Investigate flight control system optimization including inceptor characteristics

Approach:

- Systematic investigation of varying inceptor force-feel parameters and different types of command response
- Piloted ground simulation and flight tests

Current status:

 Flight tests conducted in 2011 with US Army RASCAL and DLR FHS helicopters

Next Steps:

 Piloted simulation experiment at NASA-Ames Vertical Motion Simulator (VMS)

Center Stick Inceptors

Analysis of gradients shows sensitivity of handling qualities to inceptor damping ratio, but not to the natural frequency.

LCTR2 Handling Qualities Investigations

Objectives:

- Develop understanding of the flight control and HQ effects of unique characteristics of large helicopters, including tilt-rotors: low bandwidth response, large pilot offset
- Develop handling qualities and control system requirements for large helicopters

Approach:

- Series of experiments to systematically study fundamental Handling Qualities and control system effects throughout flight envelope and airspace integration
- Piloted simulation experiments in Vertical Motion Simulator (VMS)
- Partnership with US Army, US Marines and helicopter industry (Bell, Boeing, Sikorsky)

Current status:

Four successful hover and low speed experiments in the VMS (2008 - 2011)

Previous Experiments (2008 -- 2010)

10

- 2008 Studied basic effects of rotorcraft size on piloted handling qualities in hover
 - UH-60 Blackhawk, CH-53, and LCTR
 - LCTR only achieved Level 2 Handling Qualities with Attitude Command-Attitude Hold (ACAH)
- 2009 Investigated fundamental pitch, roll and yaw response requirements and effect of C.G. to pilot offset on handling qualities
 - Level 2 Handling Qualities was best that could be achieved with ACAH control
 - New yaw bandwidth criteria suggested
 - Ride quality degrades due to pitch/heave coupling with larger pilot offsets
- 2010 Investigated advanced control mode of Translational Rate Command (TRC) using automatic nacelle motion
 - Level 1 Handling Qualities achieved with 'Improved' TRC including nacelle rate crossfeed to longitudinal cyclic
 - Actuator dynamics set at 8 rad/sec

Control Mode

2011 VMS Experiment

Objectives:

- Investigate control allocation between automatic nacelle actuation and rotor cyclic for control redundant tilt-rotor aircraft
 - Automatic nacelle: Low bandwidth
 - Longitudinal cyclic: High bandwidth
- Investigate nacelle actuation requirements and TRC architectures to achieve Level 1
 Handing Qualities

Approach:

- Vary nacelle actuator dynamics with TRC architecture from 2010 experiment
- Investigate alternative TRC architectures to achieve Level 1 Handling Qualities with low bandwidth nacelle actuator

2011 Experiment Results

- Left Figure: Varying nacelle actuator bandwidth (Nacelle-only control)
 - Level 1 HQ achieved with nacelle actuator rates greater than 4 rad/sec
 - Solid Level 2 HQ with 3 rad/sec nacelle actuator bandwidth
- Right Figure: Add feed-forward of velocity command and feedback of velocity error to longitudinal cyclic (3 rad/sec nacelle actuator bandwidth)
 - Level 1 HQ achieved with 'augmented' TRC and 3 rad/sec
 - Shows augmenting TRC control architecture can recover Level 1 HQ with lower bandwidth actuators

Concluding Remarks

Simulation Model Development:

- Working on full-envelope LCTR physics-based non-linear simulation model for use in piloted-in-the-loop VMS experiments
- Completing LCTR wing tunnel test in 7x10 foot wind tunnel at Ames to measure basic wing/fuselage/nacelle/tail aerodynamic through flight envelope
- Continuing development of LPV-based stitched linear model to support flight control and handling qualities research activities

Trajectory Optimization for Noise Abatement:

- Joint work with SRW Acoustics discipline including flight test support (Bell 430) and Rotorcraft Noise Model (RNM) in trajectory optimization
- Currently includes pilot handling qualities and vehicle performance limits and working towards including terrain constraints in trajectory planning

Cockpit and Pilot Inceptors:

- Active inceptor handling qualities study jointly with US Army examining interaction between inceptor force-feel characteristics and handling qualities
- Completed flight tests on US Army RASCAL and DLR FHS helicopters
- Planning piloted simulation in the NASA-Ames Vertical Motion Simulator (VMS)

Concluding Remarks

- Handling Qualities Design Envelope Requirements:
 - Completed 4 VMS entries examining basic low-speed handling qualities of large rotorcraft
 - Developed basic understanding of effect of vehicle size on handling qualities
 - Suggested new design requirements for large rotorcraft handing qualities
 - Examined advanced control modes including TRC with automatic nacelle control
 - Explored control redundancy to improve handing qualities
 - Working on a summary report combining results of 4 experiments
- Future Work in Handling Qualities:
 - Define follow-on experiments in the VMS
 - Trajectory optimization for noise abatement
 - Guidance and control of advanced rotorcraft in NextGen
 - Develop basic handing qualities analysis in preliminary design / sizing phase with tools such as NDARC
 - Develop higher fidelity handling qualities scale as an addition to Cooper-Harper handling qualities ratings scale

